рефераты
Главная

Рефераты по коммуникации и связи

Рефераты по косметологии

Рефераты по криминалистике

Рефераты по криминологии

Рефераты по науке и технике

Рефераты по кулинарии

Рефераты по культурологии

Рефераты по зарубежной литературе

Рефераты по логике

Рефераты по логистике

Рефераты по маркетингу

Рефераты по международному публичному праву

Рефераты по международному частному праву

Рефераты по международным отношениям

Рефераты по культуре и искусству

Рефераты по менеджменту

Рефераты по металлургии

Рефераты по налогообложению

Рефераты по оккультизму и уфологии

Рефераты по педагогике

Рефераты по политологии

Рефераты по праву

Биографии

Рефераты по предпринимательству

Рефераты по психологии

Рефераты по радиоэлектронике

Рефераты по риторике

Рефераты по социологии

Рефераты по статистике

Рефераты по страхованию

Рефераты по строительству

Рефераты по схемотехнике

Рефераты по таможенной системе

Сочинения по литературе и русскому языку

Рефераты по теории государства и права

Рефераты по теории организации

Рефераты по теплотехнике

Рефераты по технологии

Рефераты по товароведению

Рефераты по транспорту

Рефераты по трудовому праву

Рефераты по туризму

Рефераты по уголовному праву и процессу

Рефераты по управлению

Реферат: Аминокислоты

Реферат: Аминокислоты

Содержание:

Введение

Классификация аминокислот

Виды изомерии аминокислот

Двухосновные моноаминокислоты

Одноосновные диаминокислоты

Оксиаминокислоты

Серосодержащие аминокислоты

Гетероциклические аминокислоты

Способы получения аминокислот

Химические свойства аминокислот:

А) Свойства аминокислот, зависящие от наличия карбоксила.

Б) Свойства аминокислот, зависящие от наличия аминогруппы.

В) Свойства аминокислот, зависящие от совместного наличия карбоксильной и аминогруппы

Окислительно-восстановительные процессы, протекающие с участием аминокислот.

Связывание минерального азота аминокислотами.

Список использованной литературы


Введение

Аминокислоты - такие кислоты, которые помимо карбоксильной группы содержат аминогруппу NH2.


Классификация аминокислот

1) по углеводородному радикалу (предельные, непредельные, ароматические, циклические, гетероциклические.)

2) по числу карбоксильных групп (одноосновные, двухосновные и тд.)

3) по числу аминогрупп (моноамино, диамино и тд.)

4) по наличию других функциональных групп (оксиаминокислоты, серосодержащие аминокислоты)

Виды изомерии аминокислот

1) изомерия углеродного скелета

2) изомерия положения аминогруппы: 2,β, γ и α

В природных условиях, как правило, встречаются α-аминокислоты. Они образуют мономерные звенья белковых молекул, то есть входят в состав белка.

3) оптическая изомерия. Аминокислоты, которые встречаются в природе L-ряда. Рассмотрим оптическую изомерию на примере α-аминопропионовой кислоты.

СH3 *CH – C = O  α-аминопропионовая кислота, или аланин.

            NH2     OH

     Оптические изомеры:

      ОН                            OH

       С  = О                       C = O

Н С – NH2              H2N C – H

       CH3                                          CH3

D-изомер(-)          L- изомер (+)

L изомеры отличаются от D изомеров вкусом. D-изомеры сладкие, а  L- изомеры горькие или безвкусные. Природные аминокислоты это L- изомеры. В биологическом отношении аминокислоты очень важные соединения, так как из их остатков строятся белковые молекулы. В состав белков входят 20-25 аминокислот.  Это следующие:

1) СH2 C = O       аминоуксусная кислота, или глицин

    NH2       OH 

2)CH3 CH – C = O     α- аминопропионовая кислота, аланин

              NH2     OH

3) СH3 CH – CH – C = O      валин

               CH3   NH2       OH

4) CH3 – CH – CH2 – CH – C = O      лейцин

               CH3             NH2      OH

5) CH3 – CH2 – CH – CH – C = O     изолейцин

                          CH3   NH2      OH

6) C6H5 – CH2 – CH – C = O     фенилаланин

                            NH2      OH

Двухосновные моноаминокислоты

1) O = C – CH CH2 C = O  аспарагиновая кислота

     HO        NH2                OH

     Амид этой кислоты называется аспарагин. Причем на аминогруппу замещается гидроксил наиболее удаленный от аминогруппы:

O = C – CH CH2 C = O - аспарагин

 HO       NH2               NH2

2) O = C – CH CH2 CH2 C = O - глутаминовая кислота

      HO      NH2                           OH

O = C – CH CH2 CH2 C = O глутамин (амид глутаминовой кислоты)

  HO      NH2                           NH2

Одноосновные диаминокислоты

1) CH2 CH2 CH2 CH – C = O  -  орнитин

    NH2                         NH2       OH

2) CH2 – CH2 – CH2 – CH2 – CH – C = O  - лизин

    NH2                                                         NH2       OH

3) NH = C – NH CH2 CH2 - CH2 CH – C = O  -аргинин, в процессе обмена преобразуется в к-ту цитруллин

            NH2                                   NH2        OH

4) NH2 – C – NH – CH2 – CH2 – CH2 – CH C = O  -цитруллин

             O                                         NH2       OH

Оксиаминокислоты

1) СH2 CH – C = O  - серин

    OH      NH2        OH

2) CH3 – CH – CH – C = O  - треонин

               OH    NH2      OH

3) HO –C6H4 – CH2 – CH – C = O – оксифенилаланин или тирозин

                                 NH2       OH


Серосодержащие аминокислоты

1) CH2 – CH – C = O  - цистеин

     SH      NH2      OH

2) CH2 – CH – C = O   - цистин

     S         NH2      OH

     S

     CH2 – CH – C = O

                NH2      OH

3) CH3 – S – CH2 – CH2 –CH – C = O   метионин

                                   NH2       OH

Гетероциклические аминокислоты

1) H2C                       CH2                                        2) OH – HC                    CH2

                                                                                                                                 OH

    H2C                         CH – C = O                                      H2C                      CH C =O

                    NH                  OH                                                           NH        

               пролин                                                                       оксипролин

3)  N                       C – CH2 – CH – C = O             4)         CH                                       NH2   OH

                                                 NH2      OH               HC                 C             C – CH2 CH – C = O

   HC                       CH                                              HC                 C             CH

                  NH                                                                       CH        NH

            гистидин                                                                       триптофан

Среди всех аминокислот 9 являются незаменимыми, то есть они в тканях синтезироваться не могут и должны поступать с пищей. Это кислоты:

1)         Валин;

2)         Лейцин;

3)         Изолейцин;

4)         Фенилаланин;

5)         Лизин;

6)         Треонин;

7)         Метионин;

8)         Гистидин;

9)         Триптофан.

Способы получения аминокислот

1.Аминокислоты получаются при гидролизе белка, который протекает при нагревании белковых веществ при температуре равной 1000С , в присутствии серной кислоты в течении 24-48 часов. Этот способ применяется при количественном и качественном определении аминокислот в белке, как правило, методом хроматографии.

2.Действие аммиака на галогенкислоты:

 CH2 C = O + NH3                HCL + CH2 C = O

  CL    OH                                            NH2   OH

хлоруксусная                                     глицин

кислота

3. Присоединение аммиака к непредельным кислотам (таким способом получают β-аминокислоты).

 CH2 = CH – C = O + HNH2                  CH2 – CH2 C = O

                   OH                                      NH2             OH

       акриловая к-та                        β оксипропионовая к-та


Присоединение водорода идет против правила Марковникова, так как сопряженные двойные связи.

4.Восстановительное аминирование. Протекает в растительных и животных организмах. Это способ связан с введением аминогруппы в кетокислоту. Протекает в два этапа:

ОН                              OH                                ОН

С  = О         +NH3                 C = O             +2H.         С = O

С  = О         -H2O            C = NH                        СH – NH2

СН3                               CH3                             CH3

пировино-            иминокислота                    аланин

градная к-та

Химические свойства аминокислот:

Они зависят от наличия:

1)карбоксильной группы

2)аминогруппы

3)от совместного наличия двух этих групп.

А) Свойства аминокислот, зависящие от наличия карбоксила.

Аминокислоты, как и любые кислоты, способны образовывать: а)соли; б)галогенангидриды; в)сложные эфиры; г)амиды; д)ангидриды; е)подвергаются декарбоксилированию.


                                            R – CH – C = O + H2O - соль

                                                   NH2      ONa           NH2  CL

                                                                          R – CH – C = O –хлорангидрид

R CH – C = O                                                      R – CH – C = O + H2O

      NH2  OH                                                                 NH2  O – CH3 – сложный эфир

                                                                         R – CH – C = O + H2O

                                                                               NH2      NH2 – амид

                                                      R – CH2 - амин

                                                            NH2

Реакция декарбоксилирования аминокислот протекает в присутствии ферментов декарбоксилаз, а также при разложении белковых соединений, в результате таких реакций образуются амины (низшие амины содержатся в кишечных газах и имеют неприятный запах).

NH2 CH2 – CH2 – CH2 – CH2 – CH – C = O      -CO2        NH2 – (CH2)5 NH2

             лизин                        NH2  OH                     диамин пептаметилендиамин (кадаверин)

Б) Свойства аминокислот, зависящие от наличия аминогруппы.

1) Реакции ацилирования (ацил- радикал кислоты). По этой реакции один водород аминогруппы замещается на радикал кислоты – ацил. Примером может служить реакция обезвреживания бензойной кислоты в организме животных:

C6H5 C = O + HNH2 – CH2 – C = O                C6H5 C = O         OH

          OH                                  OH                                NH CH2 C = O

бензойная к-та                     глицин                              гиппуровая к-та

2) Реакция аминирования (амин- углеводородный радикал). По этой реакции один водород аминогруппы замещается на углеводородный радикал – амин (такие реакции проводятся в лаборатории, когда надо протитровать аминокислоту, то есть  количественно определить аминокислоту).

                                                                                       OH

CH3 CH – C = O + CH3 – I              HI + CH3 – CH – C = O

           NH2 OH                                                     NH – CH3

аланин                пористый                   

                               метил

По этой  реакции аминогруппа как бы зажимается в тиски, блокируется и становится нереакционноспособной. Реакционноспособной становится только карбоксильная группа.

3) Реакции дезаминирования. Дезаминирование- это отщепление аминогруппы в виде аммиака. Такие реакции протекают в обменных процессах, а часто и при нарушении обмена. Они ведут к распаду аминокислот. Различают четыре вида дезаминирования:

а) окислительное дезаминирование.

OH                                       OH                             OH

C = O                +O                 C = O         +H2O           C = O   + NH3

CH NH2      ОКИСЛЕНИЕ           C = NH                      C = O

CH3                                       CH3                                   CH3

аланин                     иминокислота            кетокислота (пировиноградная)

Окислительное дезаминирование – процесс, обратный восстановительному аминированию.

б) восстановительное дезаминирование. Протекает под действием водорода:

OH                                 OH

C = O                +2H          C = O  + NH3

CH NH2                       CH2

CH3                                      CH3

аланин              пропионовая(предельная) к-та

в) гидролитическое дезаминирование. Протекает под действием воды. При этом из аминокислоты образуются оксикислоты:

OH                                 OH

C = O                +HOH       C = O    + NH3

CH NH2                       CH – OH

CH3                                      CH3

аланин                     оксикислота (молочная)

г) внутримолекулярное дезаминирование:

 R                                                                                      R

CH2                                                                                   CH

CH NH2      ПРОТЕКАЕТ В ОСНОВНОМ В МИКРООРГАНИЗМАХ        CH     + NH3 

C = O                                                                                C = O

OH                                                                                   OH

                                                                            непредельная к-та

Основной  путь дезаминирования – это окислительное дезаминирование. Этот вид дезаминирования преобладает у животных, растений и большинства микроорганизмов. Происходит под действием ферментов дегидрогеназ. Однако, активность дегидрогеназы тканей животных для большинства аминокислот очень низкая. Активна только дегидрогеназа глутаминовой кислоты. Поэтому большинство аминокислот в организме животных дезаминируются непрямым путем. Непрямое окислительное дезаминирование характеризуется предварительным переаминированием аминокислот с α- кетоглутаровой кислотой:

                       COOH                                                           COOH

R                     CH2                                                   R              CH2

CH NH2   + CH2                                               C = O    + CH2

COOH            C = O                                            COOH      CH – NH2

                       COOH                                                            COOH

амино-       α-кетоглутаровая                  кетокис-      глутаминовая

кислота                к-та                                       лота             кислота

Образующаяся при этом глутаминовая кислота затем дезаминируется под действием глутаматдегидрогеназы до α-кетоглутаровой кислоты, которая может снова участвовать в непрямом дезаминировании других аминокислот.

COOH                               COOH                            COOH

CH2                                     CH2                                 CH2

CH2               -2H                CH2                     +H2O            CH2   + NH3

CH NH2                            C = NH                            C = O

COOH                              COOH                              COOH

глутаминовая         иминокислота        α-кетоглутаовая к-та

к-та

В) Свойства аминокислот, зависящие от совместного наличия карбоксильной и аминогруппы

1)Амфотерные свойства одноосновных моноаминокислот. Реакция водных растворов таких аминокислот на лакмус нейтральна. Это объясняется тем, что карбоксильная группа обладает кислотными свойствами, а аминогруппа – основными. Эти группы взаимодействуют с образованием, так называемых внутренних солей. Внутренние соли – это соли, образующиеся в результате взаимодействия кислотных и основных групп, находящихся в пределах одной и той же молекулы. При образовании внутренних солей аминокислот ион водорода отщепляется от карбоксильной группы и присоединяется к аминогруппе, которая превращается как бы в ион замещенного аммония. Например, для аланина:

CH3 CH – C = O                  CH3 CH – C = O -

           NH2 OH                                 +NH3  O

                                           внутренняя соль (имеет два полюса + и -).

                                                            ОН

Такие аминокислоты  ( с одной – С = О и одной NH2) обладают амфотерными свойствами, они могут реагировать как с кислотами, так и с основаниями, образуя при этом комплексные соли. Взаимодействие аминокислоты с кислотой:


CH3 CH – C = O  + H+CL-                        CH3 CH – C = O    + 

         +NH3   O-                                              NH3 OH           CL- 

                                          комплексная соль, где аминокислота является катионом

Взаимодействие со щелочью:

CH3 CH – C = O  + NaOH                    CH3 CH – C = O     –

         +NH3   O-                                             NH2    O-           Na+ + H2O

                                           комплексная соль, где аминокислота является анионом


2) Образование ди- три и полипептидов. Эта реакция протекает в организме под действием ферментов пептидаз. Она ведет к образованию первичной структуры белка. При образовании дипептида две аминокислоты связываются пептидной связью. При этом одна аминокислота реагирует карбоксильной группой , а другая аминогруппой.

CH3 CH – C = O + HNH – CH2 – C = O     -H2O      CH3 CH – C – NH – CH2 – C = O

           NH2  OH                             OH                                 NH2  O                       OH

        аланин                         глицин                               дипептидаланинглицин

 – С = О  -пептидная связь

  NH

Та аминокислота, от которой уходит гидроксил карбоксильной группы, то есть остается кислотный радикал – ацил, меняет окончание «ин» на «ил».

3) Особое поведение аминокислот при нагревании, в присутствии водоотнимающих веществ.

а) α- аминокислоты при нагревании образуют циклические амиды дикетопиперазины. взаимодействуют две молекулы :

H3C                                                                  H3C             

         CH – C = O                                                     CH – C = O

H2N                OH                -2H2O                   NH                      NH

HO                   NH2                                                 O = C – HC

  O = C – CH                                                                CH3

                     CH3                            дикетопиперазин (2, 5 –диметил – 3, 6 дикетопиперазин)

Для разных кислот радикалы при группе – СН могут быть разными, а ядро дикетопиперазина одно и то же. По мнению русских ученых Землинского, Садикова дикетопиперазины содержатся в полипептидных цепях. Они связывают остатки аминокислот также, как и пептидные связи.

б) β-аминокислоты при нагревании теряют молекулу аммиака и превращаются в непредельные кислоты.

CH3 CH – CH2 – C = O       -NH3         CH3 – CH = CH – C = O

           NH2            OH                                                      OH

Β-аминомасляная к-та                       кротоновая к-та   

в) γ-аминокислоты при нагревании, выделяя воду , образуют внутримолекулярные циклические амиды, так называемые лактамы:

CH2 CH2 – CH2 – C = O                            H2C  –  CH2

NH2                       OH                              H2C              C = O  - лактам γ-аминомасляной к-ты

  γ-аминомасляная к-та                                NH

Лактам капроновой кислоты при полимеризации образует волокно-капрон.

Окислительно-восстановительные процессы, протекающие с участием аминокислот.

Эти процессы протекают в организмах растений и животных. Имеются такие соединения, которые способны либо выделять водород, либо  поглощать его (присоединять). При биологическом окислении идет отщепление двух атомов водорода, а при биологическом восстановлении – присоединение двух томов водорода. Рассмотрим это на примере цистеина и цистина.

CH2 CH – C = O                         CH2 CH – C = O

HS      NH2 OH             -2H             S         NH2 OH

HS      NH2 OH                +2H             S        NH2 OH

CH2 – CH – C = O                        CH2 – CH – C = O

     цистеин                                            цистин

восстановленная форма         окисленная форма

Две молекулы цистина, теряя два атома водорода, образуют окисленную форму – цистеин. Этот процесс обратимый, при  присоединении двух атомов водорода к цистину образуется цистеин -  восстановленная форма. Аналогично протекает процесс окислительно- восстановительный на примере трипептида – глутатиона, который состоит из трех аминокислот: глутаминовой, глицина и цистеина.

                        цистеин

O = C – NH – CH – CH2 – SH                                     O = C NH – CH – CH2 – S – S –CH2 – CH – NH – C = O

       CH2            C = O                              -2Н                     CH2          C = O                                 C = O         CH2

       CH2               NH                              +2Н                     CH2          NH                                     NH             CH2

       CH – NH2     CH2         глицин                                   CH – NH2     CH2                               CH2             CH – NH2

       C = O            C = O                                                        C = O           C = O                           C = O          C = O

OH                OH                                                          OH               OH                                OH              OH

          (2 молекулы)

трипептид восстановленная форма                                          гексапептид окисленная форма

При окислении отщепляется 2 атома водорода и соединяются две молекулы глутатиона и трипептид превращается в гексапептид, то есть окисляется.

Связывание минерального азота аминокислотами.

У растений при избытке азота в почве аминокислоты (аспарагиновая и глутаминовая) способны связывать его в виде аммиака с образованием амидов – глутамина и аспарагина.


OH                                                        NH2

C = O                                                    C = O

CH2                                                                  CH2

CH2                  + NH3                           CH2

CH NH2                                                  CH – NH2

C = O                                                    C = O

OH                                                        OH

глутаминовая к-та                       глутамин

Аналогично идет образование аспарагина. В организмах животных также образуются амиды аспарагиновой и глутаминовой кислот, которые являются резервом (депо) азота.

Аммиак, который образуется при дезамиировании аминокислот, может связываться аспарагиновой и глутаминовой кислотами. При этом образуются амиды аспарагин и глутамин.


Список использованной литературы:

 1) Овчинников Ю.А. Биоорганическая химия / Ю.А. Овчинников. – М.: Просвещение, 1987.

 2) Яковишин Л.А. Избранные главы биоорганической химии / Л.А. Яковишин. – Севастополь: Стрижак-пресс, 2006.

3) Филиппович Ю.В. Основы биохимии. - М., 2007

4) Нейланд О.Я. Органическая химия.- М., 1990


© 2011 Рефераты и курсовые работы